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Abstract

Parallel computing is rapidly evolving to include het-
erogeneous collections of distributed and parallel sys-
tems. Concurrently, applications are becoming in-
creasingly multidisciplinary with code libraries im-
To
optimize the behavior of complex applications on

plemented using diverse programming models.

heterogeneous systems, performance analysis soft-
ware must also evolve, replacing post-mortem anal-
ysis with real-time, adaptive optimization, tightly
integrating compile-time analysis with performance
measurement and prediction, and supporting high-
modality visualization and software manipulation. In
this paper, we briefly survey the state of the art in
each of these areas and sketch a series of open re-
search problems.

1 Introduction

As parallel computing evolves from homogeneous par-
allel systems to distributed collections of heteroge-
nous systems (i.e., the computational grid), applica-
tion developers face new and more complex perfor-
mance tuning and optimization problems. Current
users of parallel systems often complain that it is
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difficult to achieve a high fraction of the theoreti-
cal performance peak — the time varying resources
of the computational grid further exacerbate these
problems. Moreover, the sensitivity of parallel system
performance to slight changes in application code, to-
gether with the large number of potential application
performance problems (e.g., load balance, data local-
ity, or input/output) and continually evolving system
software, make application tuning complex and often
counter-intuitive.

At present, we have few, if any reliable tech-
niques for predicting application performance from
first principles. Instead, we must exploit experimen-
tal techniques, making performance analysis subject
to the same constraints as other experimental sci-
ences. Furthermore, performance tools must be sim-
ple and intuitive. Unless compelled by circumstances,
most users are unwilling to invest great time and ef-
fort to learn the syntax and semantics of new perfor-
mance tools; they often view performance optimiza-
tion as an unavoidable evil. Hence, portability and
ease of use are critical to the acceptance of new per-
formance tools. Simply put, the goal of experimental
performance analysis is to provide insight into ap-
plication behavior and performance bottlenecks by
efficiently capturing and intuitively presenting per-
formance data.

The remainder of this paper is organized as follows.
In §2, we begin by describing traditional approaches
to performance instrumentation and analysis. Fol-
lowing this, in §3 we outline a set of challenges and
research directions facing the performance analysis



community, including aggressive compile-time opti-
mization, domain-specific analyses, real-time adap-
tive performance control and steering, techniques for
reducing performance data volume, and performance
data immersion and direct manipulation within vir-
tual environments. Finally, §4-§5 discuss related
work and summarize our conclusions.

2 Measurement and Analysis

Because performance analysis involves measurement,
it is prey to the same theoretical and pragmatic pit-
falls as other experimental sciences. In particular, it
must not unduly perturb the measured system, else
the experimental data will not reflect the system’s
normal behavior. However, it must be sufficiently
detailed to capture the phenomena of interest, and
it must relate the measured data to a context that
enables the user to optimize performance.

2.1 Performance Instrumentation

Historically, performance instrumentation ap-
proaches have included counting and sampling,
interval timing, and event tracing. Conceptually,
each strikes a different balance between instru-
mentation overhead, data volume, and detail. In
addition, each has multiple possible implementation
techniques, ranging from completely extrinsic (e.g.,
an external hardware monitor that counts L2 cache
misses via connections to a set of probe points)
to completely intrinsic (e.g., inserted code in an
application program to compute a histogram of
procedure activation lifetimes).

By far the most common method of performance
instrumentation is program counter sampling. The
widely used UNIX prof and gprof [11] utilities peri-
odically sample the program counter and compute a
histogram of program counter locations. Because the
histogram bins correspond to procedure code frag-
ments and sampling occurs at known intervals, his-
togram bin height is an estimator of the amount of
time spent in a particular procedure.

Profiling depends on an external sampling task,
leading to coarse granularity and requiring total pro-
gram execution time to be sufficiently long to accu-
mulate a statistically meaningful sample set. More-
over, profilers often assume a simple mapping from
object code to the original source code, which is rarely
true on parallel systems with aggressive restructuring
compilers; we will return to this topicin §3.1. Finally,

on parallel systems the code execution paths may be
different on each processor (e.g., due to data depen-
dent behavior), requiring more complex mappings to
application code.

Event counting eliminates some of sampling’s lim-
itations, albeit with additional cost. Because count-
ing is not a statistical measure, the observed frequen-
cies are accurate. However, to obtain timing informa-
tion, one must periodically timestamp and record the
counts.

As the measured analog of sampling, interval tim-
ing combines counts with elapsed time measurements.
Rather than sampling the program counter periodi-
cally to compute the amount of time spent in code
fragments, interval timing brackets code fragments
with calls to a timing routine.

Unlike counting, which naturally abstracts the oc-
currence of specific events, or interval timing, which
abstracts the frequency of specific events, event trac-
ing generates a complete sequence of events. Hence,
event tracing is a more general instrumentation tech-
nique than either counting or interval timing; from
an event trace, one can compute counts or times —
the converse is not true.

The disadvantage of tracing is the potential in-
strumentation intrusion. Because each event must
be timestamped and recorded separately, the po-
tential data volume is large, and the input/output
requirements are substantial. Instrumenting proce-
dures to record entry and exit can easily generate 16
KB/second on a single processor if the mean proce-
dure activation lifetime is 500 microseconds and the
data associated with each event includes only a four
byte event identifier and a four byte timestamp. On a
parallel system with hundreds of processors, the data
volume can approach 10 MB/second — we will return
to this topic and possible solution techniques in §3.2

In general, counting, timing, and tracing occupy
different points along the continuum of detail and
measurement overhead, and no single instrumenta-
tion approach is appropriate in all cases. The choice
of a particular approach is dictated by the desired
information and the constraints of the underlying
instrumentation implementation — some measure-
ments are not feasible in some environments.

2.2 Performance Analysis

When large scale parallel systems first emerged, sev-
eral research groups developed performance visual-
ization systems that displayed the dynamic behavior



of processors and communication networks. Exem-
plars of this work include Couch’s seminal Seecube
system [5], ParaGraph [12], and our own Hyperview
and Pablo toolkits [21, 28].

Although widely used to develop applications on
early parallel systems, the increasingly complexity of
parallel systems exposed several limitations of these
toolkits. Perhaps the most obvious constraint was
their limited scalability. Performance environment
scalability implies not only that the environment
must be capable of capturing and analyzing data from
very large numbers of processors, but also that it
must be capable of presenting the data in ways that
are intuitive and instructive.

However, early visualization systems represented
the states of individual processors (e.g., by a colored
square for each processor) and communication links
(e.g., by communication network animations). In
consequence, they were limited by workstation screen
real estate and do not scale to thousands of proces-
sors. In §3.5, we will discuss hierarchical visualiza-
tion techniques that can accomodate large numbers
of processors.

Second, increasing software complexity, high-level
programming models (e.g., data parallel and paral-
lel object) and heterogeneous, wide area computing
have all exacerbated performance analysis problems.
No longer can measured data be related to user code
without tight integration of performance measure-
ment systems with compilers and runtime systems
[1].

Third, repeated experience has shown that scien-
tific application software developers will eschew pow-
erful, but complex tools in favor of inferior, but eas-
ily understood tools. Unless compelled by circum-
stances, such users are unwilling to invest much time
and effort to learn the syntax and semantics of new
performance tools; they often view performance op-
timization as an unavoidable evil. Hence, portability
and ease of use are critical to the acceptance of new
performance tools.

Fourth, there are at least three classes of poten-
tial performance environment users, novice, interme-
diate, and expert, each with different expectations.
Novice users know relatively little about parallel sys-
tem software or hardware, nor do they wish to learn
more than the minimum necessary to optimize the
performance of their application codes. In contrast,
intermediate users are willing to conduct performance
experiments and exercise a modicum of control over
the performance environment’s behavior. Finally, ex-

pert users are intimately acquainted with the parallel
architecture and system software and want broad lat-
itude to modify system components.

3 Performance Challenges

Today, the de facto standard for performance instru-
mentation and analysis is application profiling with
post-mortem graphical display of performance bot-
tlenecks. Although adequate when (a) parallel codes
were written in sequential languages for homogeneous
parallel systems, (b) compilers generated object code
that directly reflected source code control, and (c)
this code executed on a modest number of proces-
sors, this model is now woefully inappropriate for
current execution environments. Today, applications
are written in data parallel and object-oriented lan-
guages, compilers aggressively transform source code,
and the resulting object code executes on a large, dis-
tributed collection of heterogeneous parallel systems
with time varying loads.

In such an environment, performance instrumenta-
tion and analysis tools must invert compiler transfor-
mations to report measured performance in a source
code context and minimize total performance data
volume while still enabling users to interactively drill
down to identify performance problems on remote
systems. Moreover, they must accommodate execu-
tion heterogeneity and non-reproducible behavior, re-
placing post-mortem analysis with real-time analysis
and optimization. Below, we describe the challenges
implicit in such an approach and outline possible so-
lutions.

3.1 Aggressive Optimization

Performance variability and the effort required to
write explicitly parallel code have long limited the
widespread use of parallel systems. Data parallel lan-
guages, like High Performance Fortran (HPF) [18]
and object-parallel models like parallel Ct+, have
been proposed to lessen the parallel programming
burden. Although higher level programming mod-
els can reduce programming effort and increase
code portability, they guarantee neither performance
portability across parallel architectures nor scalabil-
ity across problem sizes or number of processors.
Understanding performance problems and optimiz-
ing data parallel codes requires performance instru-
mentation and analysis tools that can relate dynamic



performance data to data parallel source code. Un-
fortunately, most current performance tools are tar-
geted at the collection and presentation of program
performance data when the parallelism and interpro-
cessor communication are explicit and the program
execution model closely mimics that in the source
code (i.e., as is the case for message passing codes).

For data parallel languages like HPF, such instru-
mentation can only capture and present dynamic per-
formance data in terms of primitive operations (e.g.,
communication library calls or DSM references) in
the compiler-generated code. However, aggressive
code restructuring and translation to a different exe-
cution model can result in executable code that differs
markedly from an application developer’s model.

Moreover, complex, multidisciplinary applications
often involve code written using a variety of lan-
guages and programming models and executing on
multiple parallel architectures. To be effective, per-
formance tools must not only support data parallel
performance analysis, they must also support multi-
ple architectures and provide language independent
interfaces, allowing users to learn but a single set of
software navigation skills.

To support source-level performance analysis of
programs in data parallel languages, we believe com-
pilers and performance tools must cooperate to inte-
grate information about the program’s dynamic be-
havior with compiler knowledge of the mapping from
the low-level, explicitly parallel code to the high-
level source[l]. Furthermore, multilevel memory hi-
erarchies, distributed cache coherence protocols, su-
perscalar processors, and speculative instruction ex-
ecution dictate integration of software measurements
with detailed hardware performance data.

3.1.1 Deep Compiler Integration

To relate dynamic performance measurements of
compiler-synthesized code, performance analysis
tools must exploit deep knowledge, obtained from the
compiler, of the translation from the high-level, data
parallel source language to the low-level parallel code.
Concomitantly, the compiler must synthesize instru-
mentation during code generation.

In an ongoing, collaborative effort with the Rice
Fortran D group, we have explored performance data
correlation techniques that can invert a wide range of
compiler transformations, including loop interchange,
code motion, and communication synthesis [1, 2].
During compilation, the Fortran D compiler emits

data on the sequence of source code transformations,
tying each synthesized code fragment to a portion of
the original data parallel source code.

During subsequent program execution, dynamic
performance data is obtained from an instrumented
version of the compiler-synthesized code. Because
this dynamic data also includes pointers to the orig-
inal data parallel code, a post-processing phase can
compute performance metrics and map these metrics
to the original data parallel source code. These met-
rics include both execution times and array reference
data locality. The latter relies on identifying each
compiler-synthesized message transmission as carry-
ing specific array segments.

3.1.2 SvPablo: Portable Analysis

Building on the insights obtained from our Rice col-
laboration, we have developed SvPablo [8], a graphi-
cal environment for instrumenting application source
code and browsing dynamic performance data. Sv-
Pablo supports performance data capture, analysis,
and presentation for applications written in a vari-
ety of languages and executing on both sequential
and parallel systems. In addition, SvPablo integrates
data from the hardware performance counters [37] on
the MIPS R10000 and SGI Origin 2000.

The SvPablo implementation relies on a single user
interface for performance instrumentation and visu-
alization. During the execution of the instrumented
code, the SvPablo library captures data and com-
putes performance metrics based on the execution
dynamics of each instrumented construct on each pro-
cessor. Because only statistics, rather than detailed
event traces, are maintained, the SvPablo library can
capture the execution behavior of codes that execute
for hours or days on hundreds of processors.

Following execution, performance data from each
processor is integrated, additional statistics are com-
puted, and the resulting metrics are correlated with
application source code, creating a performance file
that is represented via the Pablo self-describing data
format (SDDF) [28]. This performance file is the
specification used by the SvPablo browser to display
application source code and correlated performance
metrics.

Using the Pablo SDDF metaformat has enabled us
to develop a user interface that is both portable and
language independent. Moreover, because all per-
formance metrics are defined in SDDF, the interface
is also performance metric independent, allowing us



to introduce new metrics or support new languages
without change to the user interface code.

Figure 1 shows the SvPablo interface, together with
code and performance data from an HPF program.
As the figure suggests, the SvPablo interface sup-
ports a hierarchy of performance displays, ranging
from color-coded routine profiles to detailed data on
the behavior of a source code line.

Additional displays, not shown, allow one to ex-
amine detailed performance metrics for a particular
code fragment on each processor. Hence, one can first
identify a bottleneck, then locate its cause by inter-
actively “drilling down” to explore increasing levels
of detail.

3.1.3 Symbolic Performance Prediction

Although integrated compilation and performance
measurement systems can relate dynamic perfor-
mance data from measured executions of transformed
code to the original data parallel source, they still re-
quire execution of complete programs. Often, this is
too late — performance problems are due to design
decisions made much earlier and can only be elimi-
nated by large scale changes. If, during program con-
struction, it were possible to estimate performance
scalability as a function of architectural parameters,
problem size, and number of processors, performance
tools could further lessen the high intellectual cost of
developing parallel applications by allowing applica-
tion developers to understand the performance impli-
cations of data parallel code constructs.

Important questions include determining how ap-
plication performance changes with variations in the
parallel system configuration or application problem
size, and identifying which code fragments will be-
come the performance limiting bottlenecks as hard-
ware or application parameters change. These pre-
dictions need not be quantitatively exact, only quali-
tatively exact (i.e., it is acceptable for the magnitude
of prediction errors to be as high as 10-20 percent
if the predictions accurately identify bottlenecks and
track their movements).

Based on this observation, we have extended the
Rice Fortran D95 compiler to emit performance scal-
ability predictions [23, 22] for data parallel code.
In this approach, the data parallel compiler trans-
lates data parallel code and generates a symbolic cost
model for program execution time, representing the
scalability of each fragment in the original data par-
allel source.
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Figure 2: Symbolic Performance Prediction Example

As an example, Figure 2 shows a performance pre-
diction as a function of problem size N for a doubly
nested loop when executed on an Intel Paragon XP/S.
The compiler generates upper and lower bounds for
predicted execution time by considering extrema of
system-dependent constants (e.g., memory references
times).

3.1.4 Research Directions

Integrated measurement and symbolic performance
prediction opens a rich, new set of opportunities for
compile-time optimization. Using a symbolic manip-
ulator, a compiler could create cost models for alter-
native code variants, evaluate the resulting expres-
sions for specific numbers of processors and problem
sizes, and synthesize the highest performance code
variants. By augmenting and validating these sym-
bolic models with dynamic performance data from
program executions, the compiler could incrementally
refine the quality of its predictions and code gener-
ation choices. In this model, compilation and per-
formance analysis are a closed loop, with both sym-
bolic performance predictions and quantitative mea-
surements guiding the compilation process.

Building on these observations, we are extending
our symbolic models and integrating them with the
SvPablo toolkit. In addition, we are incorporating
analytic and high-level simulation models for esti-
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mating the behavior of caches and memory hierar-
chies, all based on the Polaris parallelizing compiler
[3]. Our goal is to develop an integrated performance
modeling, measurement, analysis, and prediction en-
vironment that will allow application and system de-
velopers to explore the performance implications of
software and hardware design choices, both for ex-
tant systems and hypothetical ones.

3.2 Intelligent Data Reduction

As systems and applications increase in complex-
ity and heterogeneity, identifying performance bot-
tlenecks becomes commensurately more complex. In
such cases, performance bottlenecks may lie in in-
struction schedulers, memory hierarchy management,
wide area or local communication protocols, schedul-
ing algorithms, or application load balance. Con-
sequently, any performance instrumentation system
must capture a large number of performance met-
rics if post-mortem analysis is to successfully identify
the proximate and underlying causes of poor perfor-
mance.

As we noted in §2, event traces of these metrics pro-
vide the detailed data needed to understand software
component interactions, albeit potentially at great
cost. Thus, one faces a conundrum: event tracing
is desirable to understand detailed behavior, but the
potentially large data volume, large number of per-
formance metrics, and consequent behavioral pertur-
bations make it impractical for large, long-running
applications.

To retain the advantages of event tracing while
minimizing total data volume and perturbation, one
must reduce both the number of metrics needed
to identify bottlenecks and the number of locations
where data must be captured. To formalize this no-
tion and to provide a basis for analysis, consider a set
of n dynamic performance metrics, each measured on
a set of P parallel tasks.

Conceptually, one can then view an event trace
as defining a set of n dynamic performance metrics,
my(t), on each of P tasks

(ma(t), ma(t), ..., mn(t))p p € [l..P]
that describe parallel system characteristics as a func-
tion of time ¢. Following [26], if R; denotes the range
of metric m;(t), we call the Cartesian product

M=R; xRy x..xR,

a performance metric space. Thus, the ordered n-

tuples

(m1(t) € R1;ma(t) € Ra;...imp(t) € Ry) (1)
are points in M (¢), and the event trace defines the
temporal evolution of these P points in an n dimen-
sional space.

The goal of event trace data reduction is now clear
— one must reduce both the dimensionality of the
metric space (i.e., reduce n) and the number of mea-
surement points (i.e., reduce P). Statistical cluster-
ing and projection pursuit address the first and sec-

ond problems, respectively.

3.2.1 Statistical Clustering

Most programs written for parallel systems are ei-
ther single program multiple data (SPMD) (e.g., us-
ing MPI), data or object parallel (e.g., using HPF
or parallel Ct+), or functional decompositions. In
the first two cases, some variation of the same code
usually executes on all processors, with behavior dif-
ferentiated by data-dependent control flow. In the
third case, code for each function executes on differ-
ent collections of processors. However, regardless of
the programming model, processors executing simi-
lar code with similar data tend to form behavioral
equivalence classes. In the nomenclature of (1), the
processors or tasks executing similar code with com-
parable data trace similar trajectories in the metric
space.

Dynamic statistical clustering seeks to identify
clusters of processors, where the event metrics for
each processor in the cluster trace similar trajectories.
By periodically computing cluster membership using
performance metrics from each processor, an event
tracing system can capture and extract traces only
from representative members of each cluster, dramat-
ically reducing the total data volume [26].

As an example of the possible data reduction due
to statistical clustering, consider an SPMD code that
relies on a master task to read initialization data and
allocate work to a set of N worker tasks. If the behav-
ior of all workers is similar, clustering identifies two
clusters, one with cardinality one (the master) and a
second with cardinality N (the workers), yielding a
total data reduction of nearly N.

Figure 3 shows an example of clustering applied
to event traces from a 128 processor execution of
a Hartree Fock quantum chemistry code on the In-
tel Paragon XP/S; see [26] for details. Clustering



groups behavior in a very small number of equiva-
lence classes, reducing the data volume by recording
trace data from only a few processors.
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Figure 3: Statistical Clustering Data Reduction

3.2.2 Multidimensional Projection Pursuit

Although statistical clustering can reduce the num-
ber of processors or tasks from which event data must
be recorded, it does not reduce the number of met-
rics or (equivalently) the dimensionality of the metric
space. Even after clustering identifies a small number
of processor representatives, the total data volume
may remain high. As an example, when analyzing
the performance of WWW servers [15], we found it
necessary to capture nearly fifty metrics on request
types, processor, network, and memory usage to reli-
ably identify performance problems.

Principal component analysis and its statistical
variant, projection pursuit [13], seek to identify a sub-
set of the metrics that captures most of the statistical
variation. Intuitively, at any time ¢, many of the n
metrics are highly correlated; principal component
analysis and projection pursuit identify least corre-
lated metrics.

More formally, the n metrics (1) collectively de-
fine a vector basis for an n-dimensional coordinate
system, the n orthonormal unit vectors. Projection
pursuit identifies a smaller set k& of orthonormal vec-
tors, that are each linear combinations of the original

n vectors. The most important (i.e., least correlated)
metrics are represented as the largest components of
the projection vectors

Clearly, the number of possible two or three-
dimensional projections of an n-dimensional space
can be large. Hence, projection pursuit minimizes
an index describing the projection (e.g., in the
Friedman-Tukey model [13], the index measures clot-
tedness and the algorithm uses a general hill climbing
technique to generate new views of the subspace).

Typically, the dimensionality & of the projection is
two or three, one can visualize the projected metric
space using standard visualization techniques. More-
over, because the most important (i.e., least corre-
lated) metrics are represented as the largest compo-
nents of the projection vectors, one can use the mag-
nitude of the components to select the metrics to be
recorded, reducing the total data volume. At present,
we are assessing the feasibility of this approach using
event traces captured from parallel systems.

3.2.3 Research Directions

Together, statistical clustering and projection pursuit
can dramatically reduce both the number of proces-
sors and metrics from which event traces must be
recorded. Implicit in such an approach is the need
for real-time clustering and projection; post-mortem
analysis requires the full trace. Indeed, in the Autopi-
lot model of §3.4, real-time clustering and projection
pursuit control the frequency of sensor data transmis-
sion.

Not only must the overhead for clustering and pro-
jection be sufficiently low that they do not excessively
perturb the computation, they must track changes
in application behavior. If clustering and projec-
tion are applied too infrequently, the selected pro-
cessors and metrics may no longer be representative.
Conversely, if applied too frequently, the computa-
tional overhead may excessively perturb application
behavior. Hence, developing adaptive windowing al-
gorithms for triggering clustering and projection is a
key research problem.

Autopilot can dynamically adjust its monitoring
focus on the fly, given an appropriate and auto-
mated approach to selecting interesting views. Con-
sequently, by eliminating many uninteresting views,
data volume is reduced. Within this framework, the
challenge is to develop automated techniques that
preserve interesting system behaviors while simulta-
neously reducing data volume and application per-



turbation.

3.3 Domain Specific I/O Analysis

Although generic instrumentation and analysis sys-
tems can identify performance bottlenecks, they
rarely provide the tailored data and analysis needed
to understand specific resource domains or architec-
tures. In those areas with a sufficiently large com-
mercial base, independent software developers (ISVs)
successfully have filled this niche (e.g., with tools
for network protocol analysis and tertiary storage
management. However, commercial tools for specific
high-performance computing domains are much less
common.

Of these domains, the poor performance of parallel
input/output systems has emerged as an often debili-
tating problem for many applications. Understanding
application input/output patterns is the first step to
optimizing application performance with extant file
systems and to developing more effective parallel in-
put/output file system policies.

3.3.1 Scalable I/0O Initiative

The Scalable I/O (SIO) Initiative is a broad-based
research program that includes application and sys-
tem input/output characterization, networking, file
systems, and file system application programming
interfaces (APIs), compiler and language support,
and basic operating system services. Organized as
five major working groups (performance character-
ization, operating systems, languages and runtime
systems, applications, and software integration) that
include application developers, academic researchers
and vendors, the goal of the initiative is identifica-
tion of parallel input/output problems and creation
of software solutions.

As part of the SIO Initiative, we have extended the
Pablo performance analysis toolkit to capture paral-
lel application input/output patterns and file system
responses and to compute I/O-specific performance
metrics. The most significant observation from stud-
ies using this instrumentation [6, 34, 29, 30, 34, 33]
is that scientific applications have input/output pat-
terns and requirements more complex than simple
stereotypes.

More specifically, our experimental data show that
there is wide variation in temporal and spatial access
patterns, including highly read-intensive and write-
intensive phases, extremely large and extremely small

request sizes, and both sequential and highly irreg-
ular access patterns. Moreover, we have observed
that the detailed spatial and temporal characteris-
tics of input/output patterns critically affect perfor-
mance. Even seemingly small variations have poten-
tially profound performance implications. This in-
sight motivated the development of input/output sys-
tems, described in §3.4, that can adapt to changing
input/output patterns as well as creation of APIs for
parallel input/output [4] that allows users and high-
level libraries to specify future access patterns via
hints.

3.3.2 Multilevel I/O Libraries

Although the emergence of new parallel input/output
APIs like the SIO API and MPI-IO promise to pro-
vide a standard interface for parallel input/output,
most application developers prefer to manage data
on secondary storage via high-level input/output li-
braries like the NCSA Hierarchical Data Format
(HDF). HDF is a multi-object file format for shar-
ing scientific data in heterogeneous, distributed en-
vironments. Via HDF routines, scientists can gener-
ate, manipulate, share, and visualize mesh and other
data representations without knowledge of data stor-
age formats or placements on parallel file systems

Because user requests via such libraries are poten-
tially mediated by several lower level input/output
libraries (e.g., implementing the MPI-IO and SIO
APIs) before reaching the native file system, the po-
tential for overhead due to information loss on library
boundary crossings is high. Working in conjunction
with the application and library developers we are
extending our input/output characterization tools to
analyze the overhead introduced by the library layers.

These instrumentation extensions target both the
NCSA HDF library and the new MPI-IO standard.
In both cases, the instrumentation can produce either
timestamped event traces for post-mortem calculation
of statistical summaries or compute the summaries in
real-time. In either case, the summaries include the
number of calls made to each high-level routine, the
time spent in each routine, the time spent in low-level
input/output routines to satisfy the request, and time
spent in other library routines. The former allows
one to explore greater detail, albeit at the potential
expense of large event data volumes. Conversely, the
latter trades computation perturbation for reduced
event data volume.

As an example of the capabilities of this multi-level



User | Internal
Metric | HDF HDF UNIX
Count 990 265,324 | 43,722
Time 0.05 6.15 11.94

Table 1: HDF Routine Mix (Kleing Relativity)

input/output analysis, Table 1 shows the distribution
of input/output calls for an execution of a relativity
code on an SGI Power Challenge array. The table
shows that a small number of application HDF li-
brary invocations generated a large number of inter-
nal HDF and UNIX input/output invocations. More
detailed analysis shows that a substantial fraction of
the UNIX input/output invocations were file seeks.

This “hidden cost” due to lower level input/output
libraries is quite common — a modest number of high-
level access to large data blocks often translates to a
large number of non-sequential, smaller input/output
requests. Mitigating these effects is one of the goals
of intelligent library implementation.

3.3.3 Research Directions

Multi-level measurement of input/output libraries
raises a wealth of research questions concerning li-
brary interfaces and information sharing, access pat-
tern classification and dynamic adaptation, and ter-
tiary storage integration. Only when critical access
pattern information is shared across library bound-
aries can low-level input/output libraries effectively
cache and prefetch data for use by higher layers.

3.4 Dynamic Policy Adaptation

Historically, performance analysis has been an it-
erative process, with performance analysts repeat-
edly instrumenting an application, analyzing cap-
tured performance data, and modifying the appli-
cation to alleviate identified bottlenecks. With the
emergence of wide area computing and computational
grids, where the exact execution context may never
recur, performance data captured from one execution
may not highlight the critical performance issues for
subsequent executions.

Moreover, complex, multidisciplinary applications
with adaptive meshing, discipline-specific algorithm
interactions, and real-time analysis routines, exhibit
time dependent execution signatures. Experience has
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shown that matching resource policies to time vary-
ing application behavior can greatly increase applica-
tion performance (e.g., tuning input/output policies
for caching and prefetching can reduce application
input/output costs by an order of magnitude [20]).

Based on these observations, we believe the histor-
ical model of post-mortem performance analysis and
optimization must be subsumed by a new model of
real-time analysis and adaptive optimization. Such
adaptive systems respond to both changes in exe-
cution context and resource availability and to time
varying application resource demands, dynamically
adjusting resource policies to maximize achieved per-
formance.

3.4.1 Awutopilot Adaptive Control System

Development of closed loop adaptive performance
analysis systems minimally requires three compo-
nents:

e intelligent decision procedures that determine
how and when the system should adjust resource
allocation policies and system parameters,

e distributed performance sensors that collect per-
formance data for decision procedures, and

e resource policy actuators that implement change
parameters and policies in response to decisions.

Below, we describe the design of Autopilot, a closed
loop performance measurement and adaptive control
system that includes these components.

Flexible Decision Procedures. Common deci-
sion procedure mechanisms like decision tables or
trees rely on a consistent division of the parame-
ter space, assigning policies and policy parameters
to each division. Likewise, controllers derived using
classic control theory are based on a rigorous mathe-
matical analysis of the underlying system. However,
the dynamic behavior of heterogeneous distributed
systems and irregular multidisciplinary applications
are too poorly understood to be amenable to either
of these control techniques.

In contrast, fuzzy logic targets precisely the at-
tributes of the resource management problem that
challenge classic techniques [14], namely conflicting
goals and poorly understood optimization spaces.
Autopilot builds on this observation by coupling a
configurable fuzzy logic rule base for distributed de-
cision making with wide area performance sensors



and policy control actuators. The rule base embodies
common sense rules for resource management (e.g.,
aggressively prefetch file blocks for small, sequential
requests).

Performance Sensors. Autopilot’s performance
instrumentation is based on a set of distributed sen-
sors that extract information from the component
tasks of executing applications. In addition to the
standard requirements of low overhead and minimal
perturbation, sensors must accommodate wide area
computation where some of the tasks may execute
on remote systems with different architectures than
the clients receiving the data.

The Autopilot sensor requirements are driven by a
desire to minimize application perturbation, reduce
communication frequency and volume, and maximize
flexibility. Based on these constraints, Autopilot sen-
sors support local data buffering and reduction, dy-
namic connection to remote tasks, and dynamic acti-
vation and removal.

Local data buffering and reduction (e.g., com-
puting sliding window averages from measurements)
trades computation perturbation at the site of data
capture for reduced communication frequency and
data volume. Because data transmission is often the
most expensive part of data collection, local data re-
duction can dramatically decrease measurement per-
turbation.

Because the metrics needed to identify performance
bottlenecks and optimize applications change with
application behavior, decision mechanisms must be
able to dynamically activate and deactivate sensors
in response to changing conditions. Finally, because
source code is not always available, particularly for
proprietary software libraries, one of the Autopilot
sensor design goals is support for dynamic instru-
mentation, allowing sensors to be inserted or removed
from a program executable.

Policy Actuators. Resource policy actuators form
the final component of the Autopilot triumvirate,
proving the mechanism to change application param-
eters or resource policies during execution. Driven
by the output of decision procedures, actuators have
many of the same properties as sensors, including lo-

cal computation and distributed activation.
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3.4.2 Adaptive Parallel File Systems

As our extensive analysis of input/output dynamics
[6, 35, 32] has shown, the parallel input/output pat-
terns in emerging applications are both irregular and
dynamic. Because the interactions between these ap-
plications and the file system software change dur-
ing and across application executions [19], it is diffi-
cult or impossible to determine a globally optimal
input/output configuration or to statically config-
ure runtime systems and resource management poli-
cies for parallel input/output. Hence, parallel in-
put/output optimization provides an excellent test of
an adaptive, closed loop control system like Autopilot.

Based on these experiences, we have designed and
started the implementation of a second generation
portable parallel file system, PPFS II, with real-
time, adaptive policy control. PPFS II is designed
to work atop either parallel systems or PC and work-
station clusters, providing a flexible testbed for high-
performance input/output experiments.

To explore automatic, qualitative classification of
resource use, we have developed a suite of trained
artificial neural networks (ANNs) [19] and hidden
Markov models (HMMs) [20] that are implemented
as Autopilot sensors. ANNs can efficiently classify ac-
cess streams in real-time. In contrast, HMMs build a
probabilistic model of the access pattern using prior
execution training. This generality allows HMMs to
classify arbitrary access patterns.

In addition to automatic behavioral classification
techniques, PPFS also includes a flexible set of fuzzy
logic rules that can intelligently select file system poli-
cies based on input/output resource demands and
supplies. In this context, we are developing a set
of adaptive, dynamic policies to enhance the parallel
input/output system performance, including adap-
tive striping and dynamic storage redundancy, that
can trade storage space for increased input/output
bandwidth and balance conflicting resource demands
within and across applications.

3.4.3 Research Directions

Earlier, we argued that deep integration of perfor-
mance tools and compilation systems was necessary
to map dynamic performance data to application
source code. Because an increasing fraction of appli-
cations rely on proprietary software libraries where
source code is not available, comprehensive, dy-
namic instrumentation must include both compiler-
synthesized measurements and object code instru-



mentation. Although some binary rewriting tools can
capture instruction frequencies, relating this data to
source code is difficult. Current practice is restricted
to object code instrumentation at procedure bound-
aries, and even this presumes limited procedure inlin-
ing. To enable comprehensive instrumentation, com-
pilers must record sufficient metadata for later object
code instrumentation even when source code is not
available.

To complement comprehensive instrumentation,
intelligent data acquisition, perhaps based on the sta-
tistical clustering and projection pursuit techniques
of §3.2, are needed to dynamically adjust the types
and volume of performance data. Any adaptive re-
source management system must intelligently enable
and disable sensors to minimize data volume while
maintaining enough information to correctly detect
critical decision points.

We also see the role of performance analyst as
evolving from diagnosing individual performance
problems to creating rule bases and making critical
instrumentation decisions. Currently, there are no
formal methods or useful tools that support creation
and validation of rule sets for adaptive control. Fuzzy
logic seems promising, but new methods, such as neu-
ral networks and genetic algorithms, can also be used
to learn control rules and select membership func-
tions [24]

Finally, while neural networks and hidden Markov
models have proven useful for input/output charac-
terization [20], other application resource characteri-
zatlons remain to be explored. Concurrently, better
techniques for identifying and exploiting global char-
acterizations must be developed.

3.5 Direct Manipulation

Although statistical clustering, projection pursuit,
and adaptive control techniques can all reduce per-
formance data volume and lessen the intellectual bur-
den of performance optimization, the application de-
veloper or performance analyst can gain insight only
by exploring the measured data. With rapidly rising
software complexity and system heterogeneity, this
has become an increasingly odious and tedious task.

Simply put, performance visualization and analysis
tools have not kept pace with the rapid rise in appli-
cation and system complexity. In contrast to the ac-
ceptance of immersive virtual environments for anal-
ysis of complex scientific data, simple static and dy-
namic workstation graphics remain the de facto stan-
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dard for performance analysis. For performance ana-
lysts to effectively visualize and optimize the behavior
of tens of distributed parallel systems connected by
high-bandwidth networks, accessing distributed sec-
ondary and tertiary storage systems, and collectively
containing thousands of processors, new performance
visualization systems must more fully exploit human
sensory capabilities.

Not only has the number of factors that can affect
performance increased, effective performance tuning
of distributed applications often requires cooperative
exploration by a group of physically dispersed domain
experts (e.g., networking, storage, scheduling, and ar-
chitecture). Consequently, their analysis tools must
reflect the collaborative, often asynchronous nature
of their work.

3.5.1 Virtue Performance Data Immersion

Although there are many possible designs for an im-
mersive performance environment, we believe all suc-
cessful designs will share the majority of the following
features:

hierarchical views that can represent parallel
software components and their interactions,

attribute controls for interactive modification
and adjustment of software attributes and pa-
rameters,

direct manipulation tools for modifying system
behavior during execution,
annotation for

multimedia software

chronous collaboration, and

asyn-

actualization interfaces that connect the virtual
environment with the external world, realizing
the effects of modifications.

These beliefs are buttressed by our experience with
virtual environment visualization of WWW traffic
and parallel input/output [31].

Below, we describe the design of Virtue, a col-
laborative environment for immersive performance
analysis that embodies these design components. At
present, a prototype of Virtueis operational, support-
ing three-dimensional visualization in the CAVE [7],
but much work remains to complete implementation
of all design components.



Hierarchy and Abstraction. As we noted in §2,
the key limitation of extant performance visualiza-
tion tools is their lack of scalability. To address this
problem, Virtue realizes abstract data as a hierar-
chy of embedded, three-dimensional graphs. Within
the virtual environment, one can interactively expand
and contract subgraphs to explore details at a partic-
ular site.

In this model, distributed computations are ini-
tially represented as geographic graphs whose vertices
represent specific computation sites and whose edges
represent intersite communication. By mapping per-
formance metrics to visual attributes like graph ver-
tices and edges, the geographic graph provides an
overview of the computation.

By selecting a specific site, one can expand the as-
sociated subgraph to see additional detail on the com-
putation at that site. Thus, this model of hierarchy
allows one to move from a geographic view, through
a single parallel system view, to a task graph or pro-
cedure call view on a specific processor.

Direct Manipulation Tools. Although a few per-
formance visualization systems accept real-time data
streams and display software behavior during exe-
cution, most rely on post-mortem data. In conse-
quence, performance data analysis and visualization
is a largely passive process — one cannot change pa-
rameters or policies of the application or underlying
system and see their effects except by modifying and
re-executing the code.

Virtue’s design is predicated on the belief that
users can best optimize performance by interacting
with virtual objects (i.e., the hierarchical graphs rep-
resenting system components) just as they would ob-
jects in the physical world. This direct manipula-
tion model makes the user a participant in the per-
formance experiment rather than merely an observer.

Virtue graphs include manipulators (e.g., 3-D slid-
ers and buttons) that are accessible via a tactile feed-
back data glove. By touching graph components, one
can expand or contract subgraphs and change the be-
havior of executing software (e.g., toggling a caching
policy or changing a network packet size).

Distributed Collaboration. Just as computa-
tions increasingly involve distributed access to remote
resources, application software developers and per-
formance analysts are themselves often distributed.
For these groups to collaborative effectively, perfor-
mance visualization systems must be reflective, al-
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Figure 4: Virtue and Autopilot Coupling

lowing distributed groups to share visualizations and
insights both synchronously and asynchronously. For
synchronous collaboration, live audio and video from
all participants are displayed within Virtue, allowing
them to cooperatively explore the graph hierarchy.
In contrast, asynchronous collaboration mandates
sharing across both time and space, by annotat-
ing interesting phenomenon with notes and insights
for later reference and exploration by collaborators.
Virtue includes a multimedia annotation system that
allows users to select objects in a Virtue graph,
and attach an audio/video annotation via voice com-
mands. When subsequent participants reactivate the
visualization, these annotations, denoted by icons at-
tached to graph objects, can be selected and replayed.

Remote Actualization. As we noted earlier, di-
rect manipulation allows users to change Virtue
graph representations and parameters. To realize the
effects of these changes, the virtual environment must
be coupled to the system from which data is being
captured. In Virtue this coupling or actualization is
via Autopilot actuators.

Just as Autopilot sensors provide the data sources
needed for real-time visualization in Virtue, actuators
provide the interface for realizing virtual environment
manipulations. As Figure 4 suggests, Virtue replaces
closed loop software control via fuzzy logic decision
procedures with interactive, adaptive control.



3.5.2 Research Directions

Immersive, three-dimensional visualization of soft-
ware structure and execution dynamics opens a wide
range of research problems in psychometrics and us-
ability, manipulation interfaces and controls, and
training of adaptive system software. In particu-
lar, understanding which mappings of performance
data to visual (e.g., shape, color, placement, size,
and opacity), sonic, and tactile attributes provide the
most insight is a key open problem.

Statistical techniques like clustering and projection
pursuit are natural complements to immersive visual-
ization, reducing the possible domain of exploration
and focusing attention on statistically relevant met-
rics. However, dynamic metric selection must be con-
strained by the need to maintain visual continuity for
human interaction.

Quite clearly, the time scale for interactive analy-
sis and resource policy optimization precludes certain
types of microscale optimization (e.g., selecting syn-
chronization primitive policies on a millisecond time
scale). However, it effectively supports macroscale
optimization (e.g., file caching polices on a minute
or hour time scale). Intelligently integrating software
control and adaptation with interactive optimization
will require balancing occasionally conflicting goals.

Finally, learning algorithms for software rule bases
could potentially generalize from examples of inter-
active optimization. Alternatively, users could inter-
actively adjust the parameters of extant rule bases.
In such a meta-optimization model, the virtual envi-
ronment is the substrate for configuring closed loop
adaptive controls systems.

4 Related Work

A large number of a priori performance prediction
and @ posteriori performance measurement and anal-
ysis tools have been developed, targeting both se-
quential and parallel systems — far more than can be
summarized here. Notable examples include P*>T [10]
for performance prediction, together with Paradyn
[25] and AIMS [36] for performance measurement.
Each has exposed key research issues in performance
measurement and analysis.

Similarly, several systems have been built that sup-
port application behavior steering (i.e., guiding a
computation toward interesting phenomena), though
there have been fewer efforts to interactively steer or
adaptively control application performance. Notable
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examples include Leblanc’s [16] creation of an adap-
tive real-time system for robotic control that con-
sists of a multiprocessor executing a group of adap-
tive cognitive tasks and Schwan et al’s [9] develop-
ment of adaptive control mechanisms based on a sen-
sor/actuator model.

Performance data visualization has a long and sto-
ried history, though the explosion of interest in visu-
alization of parallel system behavior can be traced to
Seecube [5], Pablo [28] and ParaGraph [12]. Virtual
environments for performance analysis [27] are less
common, though emerging immersive systems for dis-
tributed collaboration [17] target many of the same
problems.

5 Conclusions

As parallel computing evolves from homogeneous par-
allel platforms and applications dominated by sin-
gle algorithms to heterogeneous collections of paral-
lel systems and multidisciplinary applications, per-
formance measurement, analysis, and optimization
problems continue to increase. With this rise in com-
plexity, performance measurement systems must con-
tinue to evolve, integrating performance data from
a wider range of sources and shifting from post-
mortem optimization to real-time adaptive manage-
ment. Concurrently, analysis and visualization sys-
tems must support the reality of distributed collabo-
ration and hierarchical visualization.
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